Integration site selection by the Bacteroides conjugative transposon CTnBST.

نویسندگان

  • Bo Song
  • Nadja B Shoemaker
  • Jeffrey F Gardner
  • Abigail A Salyers
چکیده

A newly discovered Bacteroides conjugative transposon (CTn), CTnBST, integrates more site specifically than two other well-studied CTns, the Bacteroides CTn CTnDOT and the enterococcal CTn Tn916. Moreover, the integrase of CTnBST, IntBST, had the C-terminal 6-amino-acid signature that is associated with the catalytic regions of members of the tyrosine recombinase family, most of which integrate site specifically. Also, in most of these integrases, all of the conserved amino acids are required for integration. In the case of IntBST, however, we found that changing three of the six conserved amino acids in the signature, one of which was the presumed catalytic tyrosine, resulted in a 1,000-fold decrease in integration frequency. Changes in the other amino acids had little or no effect. Thus, although the CTnBST integrase still seems to be a member of the tyrosine recombinase family, it clearly differs to some extent from other members of the family in its catalytic site. We also determined the sequence requirements for CTnBST integration in the 18-bp region where the crossover occurs preferentially during integration. We found that CTnBST integrates in this preferred site about one-half of the time but can also use other sites. A consensus sequence was tentatively derived by comparison of a few secondary sites: AATCTGNNAAAT. We report here that within the consensus region, no single base change affected the frequency of integration. However, 3 bp at one end of the consensus sequence (CTG) proved to be essential for integration into the preferred site. This sequence appeared to be at one end of a 7-bp crossover region, CTGNNAA. The other bases could vary without affecting either integration frequency or specificity. Thus, in contrast to well-studied site-specific recombinases which require homology throughout the crossover region, integration of CTnBST requires homology at one end of the crossover region but not at the other end.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration and excision of a newly discovered bacteroides conjugative transposon, CTnBST.

Conjugative transposons (CTns) are major contributors to the spread of antibiotic resistance genes among Bacteroides species. CTnBST, a newly discovered Bacteroides conjugative transposon, carries an erythromycin resistance gene, ermB, and previously has been estimated to be about 100 kbp in size. We report here the locations and sequencing of both of its ends. We have also located and sequence...

متن کامل

A new Bacteroides conjugative transposon that carries an ermB gene.

The erythromycin resistance gene ermB has been found in a variety of gram-positive bacteria. This gene has also been found in Bacteroides species but only in six recently isolated strains; thus, the gene seems to have entered this genus only recently. One of the six Bacteroides ermB-containing isolates, WH207, could transfer ermB to Bacteroides thetaiotaomicron strain BT4001 by conjugation. WH2...

متن کامل

The Bacteroides thetaiotaomicron protein Bacteroides host factor A participates in integration of the integrative conjugative element CTnDOT into the chromosome.

UNLABELLED CTnDOT is a conjugative transposon found in Bacteroides species. It encodes multiple antibiotic resistances and is stimulated to transfer by exposure to tetracycline. CTnDOT integration into the host chromosome requires IntDOT and a previously unknown host factor. We have identified a protein, designated BHFa (Bacteroides host factor A), that participates in integrative recombination...

متن کامل

A bacteroides conjugative transposon, CTnERL, can transfer a portion of itself by conjugation without excising from the chromosome.

CTnERL, a Bacteroides conjugative transposon, transferred DNA by an Hfr-type mechanism during conjugation when it was excision deficient due to an insertion in the integrase gene. Rescue of the conjugative transposon sequences required the recipient to be RecA proficient and to contain an integrated CTnERL. The transfer efficiency was only 10- to 30-fold lower than the normal element transfer e...

متن کامل

Excision, transfer, and integration of NBU1, a mobilizable site-selective insertion element.

The Bacteroides species harbor a family of conjugative transposons called tetracycline resistance elements (Tcr elements) that transfer themselves from the chromosome of a donor to the chromosome of a recipient, mobilize coresident plasmids, and also mediate the excision and circularization of members of a family of 10- to 12-kbp insertion elements which share a small region of DNA homology and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 18  شماره 

صفحات  -

تاریخ انتشار 2007